青藏高原东缘地下工程岩爆风险投图研究

杜世回

铁道工程学报 ›› 2020, Vol. 37 ›› Issue (6) : 14-18.

PDF(836 KB)
PDF(836 KB)
铁道工程学报 ›› 2020, Vol. 37 ›› Issue (6) : 14-18.
长大干线:工程地质与路基

青藏高原东缘地下工程岩爆风险投图研究

  • 杜世回**
作者信息 +

Research on the Rock Burst Risk of Underground Engineering by Projection Method on the Eastern Margin of Tibetan Plateau

  • DU Shihui
Author information +
文章历史 +

摘要

研究目的:工程建设中积累的地应力实测数据可为同一区域新建地下工程大范围选线及初步勘察等阶段区域地应力值预测、岩爆风险评价提供重要参考。本文通过侧压系数回归计算,预测本地区地应力特征。按照硬质岩代表性抗压强度等级,研究投图法分析岩爆风险,并给出本地区地下工程埋深设置原则。
研究结论:(1)研究区最大水平主应力侧压系数的外包线(最大值)、中线(平均值)、内包线(最小值)分别为KH-max=680/Z+0.91、KH-ave=256/Z+0.78和KH-min=56/Z+0.55;(2)以硬质岩代表性抗压强度 Rc为 70 MPa、90 MPa、110 MPa、130 MPa四个等级投图,显示青藏高原东缘地下工程发生破坏性较大的中等岩爆的埋深主要在500~1 950 m之间,中值约为1 150 m;发生强烈岩爆的埋深主要在1 200 m以上,因此在选线时应尽量降低1 150~1 200 m埋深以上的隧道长度;(3)本文提出的地应力背景值预测、地下工程埋深设置与岩爆风险投图评价方法,可指导工程技术人员在青藏高原东缘地区开展勘察设计和相关研究工作。

Abstract

Research purposes: The geostress data accumulated in the built underground engineering in a certain area can provide an important significance for the regional rock burst risk analysis of underground engineering under similar structural geology and engineering geological conditions, especially in the early stage of large-scale underground engineering, such as location selection, preliminary investigation, etc. Based on regression calculation of lateral pressure coefficient, the geostress characteristics in eastern margin of Tibetan Plateau are predicted analyzed. Then, referring to the compressive strength grade of main hard rock in the area, the risk of rock burst in this area is analyzed by the method of projection, and the principle of setting the buried depth of underground engineering in this area is given.
Research conclusions: (1) The K values in the area satisfy KH-max=680/Z+0.91(maximum value of the KH), KH-ave=256/Z+0.78(average value of the KH), KH-min=56/Z+0.55(minimum value of the KH). (2) When the representative compressive strength of hard rock Rc equals to 70 MPa, 90 MPa, 110 MPa and 130 MPa, the buried depth of moderate rock burst is mainly between 500~1 950 m with a median at about 1 150 m, and the buried depth of strong rock burst is mainly over 1 200 m. Therefore, attention should be paid to reducing the tunnel length with depth above 1 150~1 200 m. (3) The predicted background value of the geostress, the setting of the buried depth of underground engineering and the evaluation method of the rock burst risk map proposed in this paper can guide the engineers and technicians to carry out the investigation and design work in this area, as well as research work.

关键词

地下工程 / 地应力 / 青藏高原东缘 / 岩爆

Key words

underground engineering / geostress / eastern margin of Tibetan Plateau / rock burst

引用本文

导出引用
杜世回. 青藏高原东缘地下工程岩爆风险投图研究[J]. 铁道工程学报, 2020, 37(6): 14-18
DU Shihui. Research on the Rock Burst Risk of Underground Engineering by Projection Method on the Eastern Margin of Tibetan Plateau[J]. Journal of Railway Engineering Society, 2020, 37(6): 14-18
中图分类号: P642   

参考文献

[1] 王孝健,苏生瑞,吴心怡,等. 中国西南地区地应力特征研究[J]. 公路,2014(12): 5-10.
Wang Xiaojian, Su Shengrui, Wu Xinyi, etc. Study of in-situ Stress Characteristics in Southwestern China [J]. Highway,2014(12):5-10.
[2] 谢富仁,崔效锋. 中国大陆及邻区现代构造应力场分区[M]. 北京: 中国地图出版社,2015.
Xie Furen,Cui Xiaofeng. Division of the Recent Tectonic Stress Field in China Mainland and Its Adjacent Regions[M]. Beijing: SinoMaps Press, 2015.
[3] 王艳华,崔效锋,胡幸平,等. 基于原地应力测量数据的中国大陆地壳上部应力状态研究[J]. 地球物理学报,2012(9):3016-3027.
Wang Yanhua, Cui Xiaofeng, Hu Xingping, etc. Study on the Stress State in Upper Crust of China Mainland Based on In-situ Stress Measurements[J]. Chinese Journal of Geophysics, 2012(9):3016-3027.
[4] 景锋. 中国大陆浅层地壳地应力场分布规律及工程扰动特征研究[D]. 武汉:中国科学院研究生院(武汉岩土力学研究所),2009.
Jing Feng. Research on the Distribution Rule of the Shallow Crustal Geostress field in China Mainland and Engineering Disturbance Characteristics[D]. Wuhan: Insititute of Rock and Mechanies, Chinese Academy of Sciences,2009.
[5] 陈兴强. 基于地应力侧压系数的青藏高原东南缘区域性岩爆预测研究[J]. 铁道标准设计,2020(7):1-7.
Chen Xingqiang. Prediction of Regional Rock Burst in Southeastern Qinghai-Tibet Plateau Based on In-situ Stress Lateral Pressure Coefficient[J]. Railway Standard Design,2020(7):1-7.
[6] 毛红梅.隧道地应力测试与岩爆倾向性分析[J].铁道工程学报,2011(3):64-68.
Mao Hongmei. Testing of Groud Stress of Tunnel and Analysis of Tendentiousness of Rock Outbrust [J]. Jouranl of Railway Engineering Society, 2011(3):64-68.
[7] 陶振宇,张黎明. 地应力与地壳岩石强度之间关系的研究[J]. 水文地质工程地质,1990(6):27-30.
Tao Zhenyu, Zhang Liming. Study on the Relationship Between In-situ Stress and Rock Strength[J]. Hydrogeology and Engineering Geology,1990(6):27-30.
[8] 王栋,李天斌,蒋良文,等. 川藏铁路某超深埋隧道地应力特征及岩爆分析[J]. 铁道工程学报,2017(4):46-50.
Wang Dong, Li Tianbin, Jiang Liangwen, etc. Analysis of the Stress Characteristics and Rock Burst of Ultra Deep Buried Tunnel in Sichuan-Tibet Railway[J]. Journal of Railway Engineering Society,2017(4):46-50.

基金

中国铁路总公司科技研究开发计划(P2018G045);陕西省科技厅自然科学基础研究计划项目(2020JQ-999);中铁第一勘察设计院集团有限公司科研项目(院科19-06、院科19-80)

PDF(836 KB)

8

Accesses

0

Citation

Detail

段落导航
相关文章

/