研究目的:磁悬浮列车的高速运行会引起低真空管道温度升高,使得温度应力成为一项不可忽视的结构荷载,因此有必要开展结构温度应力试验,判断结构运用的可行性,同时如何基于体积小巧的电阻应变片进行温度应力的解析方法也亟待研究。基于此,本文设计和搭建可模拟低真空环境的管道结构实验平台开展实验研究,并以电阻应变片为温度应变测试元件,探讨基于应变片直接观测数据的温度应力解析方法。
研究结论:(1)温度荷载作用时,被测结构的实际变形量、应变片热膨胀系数和电阻温度系数共同决定了电阻应变片实测读数;(2)低真空管道内壁温度高于50 ℃后,外壁圆周方向的约束出现了强弱交替变化的现象,低真空管道内壁温度达到60 ℃时温度拉应力达到5 MPa左右,需要引起重视;(3)推导的应变修正公式和应力计算公式可为基于应变片观测数据的温度应力分析提供依据:(4)本文实验研究结果可为低真空管道运输系统的结构选型及温度控制提供参考。
Abstract
Research purposes:The high speed operation of maglev train can cause temperature increment of low vacuum pipe, which makes the temperature stress become an assignable structure load. So it is necessary to carry out experiment about structure temperature stress to determine the feasibility of the structure. At the same time, the temperature stress analysis method also needs to be studied based on the small size resistance strain gauge. In this paper, the test platform of low vacuum model pipeline structure was set up for the experimental study, and the temperature stress analysis method was discussed based on the data directly observed by resistance strain gauge.
Research conclusions:(1)The actual deformation of measured structure, thermal expansion coefficient and temperature coefficient of resistance strain gauge codetermine the resistance strain gauge reading under temperature load.(2)When the temperature of pipe inner wall is above 50 ℃, the constraining force around the outer wall circumference are in strong-weak cycles. When the inner wall temperature reaches 60 ℃, the temperature tensile stress reaches about 5 MPa, which needs to be pay more attention to.(3)The strain correction formula and the stress calculation formula can provide the basis for the temperature stress analysis based on the strain gauge observation data. (4)The experimental results can provide reference for pipe selection and temperature control of low vacuum pipeline transportation system.
关键词
低真空 /
管道结构 /
温度应力 /
模拟实验 /
电阻应变片
{{custom_keyword}} /
Key words
low vacuum /
pipeline structure /
temperature stress /
model experiment /
resistance strain gauge
{{custom_keyword}} /
中图分类号:
U455.3
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 熊嘉阳,邓自刚.高速磁悬浮轨道交通研究进展[J].交通运输工程学报,2021(1):177-198.
Xiong Jiayang, Deng Zigang. Research Progress of High-Speed Maglev Rail Transit[J]. Journal of Traffic and Transportation Engineering,2021(1):177-198.
[2] 沈通,马志文,杜晓洁,等. 世界高速磁悬浮铁路发展现状与趋势分析[J]. 中国铁路,2020(11):94-99.
Shen Tong, Ma Zhiwen, Du Xiaojie, etc. Development Status and Trend Analysis of High Speedmaglev Railways Worldwide[J]. China Railway, 2020(11):94-99.
[3] 邓自刚,张勇,王博, 等.真空管道运输系统发展现状及展望[J].西南交通大学学报,2019(5):1063-1072.
Deng Zigang,Zhang Yong,Wang Bo,etc. The Development Status and Outlook of Evacuated Tube Transportation System[J]. Journal of Southwest Jiaotong University,2019(5):1063-1072.
[4] Robert H G. Vacuum Tube Transportation System[P].U.S: 2511979, 1950.
[5] 张俊博,李红梅,王俊彪, 等. 低真空管道磁悬浮列车温度场数值计算[J]. 真空科学与技术学报, 2021(5):450-458.
Zhang Junbo, Li Hongmei, Wang Junbiao, etc. Numerical Analysis of the Temperature Field of Vacuum Tube Maglev Train[J]. China Journal of Vacuum Science and Technology,2021(5):450-458.
[6] 张俊博,李红梅,王俊彪, 等.低真空管道磁悬浮列车热效应仿真分析研究[J].中国铁路,2020(11):100-106.
Zhang Junbo, Li Hongmei, Wang Junbiao, etc. Simulation Analysis and Research on Thermal Effect of Maglev Train in Low Vacuum Tube[J].China Railway, 2020(11):100-106.
[7] 樊士广,王宇,王新刚.大体积混凝土温度应力仿真分析及防裂措施[J].中国港湾建设,2015(7):53-56.
Fan Shiguang, Wang Yu, Wang Xingang. Temperature Stress Simulation Analysis and Crack Control Measures of Mass Concrete[J]. China Harbour Engineering, 2015(7): 53-56.
[8] 胡曙光,陈静.混凝土温度应力检测原理与装备[M].北京:国防工业出版社,2008.
Gao Shuguang, Chen Jing.Principle and Equipment of Temperature Stress Detection of Concrete[M]. Beijing: National Defense Industry Press, 2008.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
中铁隧道科技创新(隧研合2019-08);中铁股份科技研发计划(2020-重点-27)
{{custom_fund}}