研究目的:宜城汉江特大桥为新建襄阳至荆门高速铁路的关键控制性工程,主桥采用2×200 m双主跨跨越汉江通航水域。通过研究主桥桥跨布置及支承体系,从技术性、经济性等方面综合比选斜拉加劲刚构连续梁和钢-混组合(混合)梁刚构连续梁两种桥式方案。
研究结论:(1)两种方案均为适用方案,斜拉加劲刚构连续梁方案在刚度条件、长期线形稳定性、技术成熟性、工程实践经验、维修养护和景观效果等方面有优势;(2)斜拉加劲刚构连续梁方案通过采用“高中塔、低边塔”的桥塔布置,保证合理结构受力并避免边支座负反力;(3)结构计算表明结构受力安全可靠,列车行车安全性、旅客乘坐舒适性均满足要求;(4)本设计成果可为类似铁路桥梁提供参考。
Abstract
Research purposes:Yicheng Hanjiang River Bridge is a key control project of the newly-built Xiangyang-Jingmen High-speed Railway. The main bridge uses double main spans of 2×200 m to cross the navigable waters of the Hanjiang River. After studying the bridge span layout and support system, the two bridge schemes, cable-stayed stiffened rigid frame continuous beam bridge and steel-concrete composite (hybrid) rigid frame continuous beam bridge, are comprehensively compared from the aspects of technology and economy.
Research conclusions:(1) The two schemes are applicable. The cable-stayed stiffening rigid frame continuous beam bridge scheme has advantages in stiffness condition, long-term geometry stability, technical maturity, engineering practice experience, maintenance and landscape effect, etc. (2) The cable-stayed stiffened rigid frame continuous beam bridge scheme, by adopting the layout of "high middle pylon, low side pylon", ensure the reasonable structural stress and avoid the negative reaction of side bearings. (3) The static calculation of the structure shows that the structure is safe and reasonable for loading. The safety of train operation and the comfort of passengers all meet the requirements. (4) The design results can provide reference for similar railway bridges.
关键词
高速铁路 /
刚构连续梁 /
钢-混结合梁 /
高低塔 /
方案比选 /
设计
{{custom_keyword}} /
Key words
high-speed railway /
rigid frame continuous beam /
steel-concrete composite beam /
high and low pylons /
scheme comparison /
design
{{custom_keyword}} /
中图分类号:
U238
U448.13
U448.27
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈良江,文望青. 中国铁路桥梁(1980—2020)[M]. 北京:中国铁道出版社有限公司,2020.
Chen Liangjiang, Wen Wangqing. China Railroad Bridge (1980-2020) [M]. Beijing: China Railway Publishing House Co. Ltd, 2020.
[2] 文望青. 高速铁路混凝土梁拱组合桥[M]. 北京:中国铁道出版社有限公司,2021.
Wen Wangqing. High-speed Railroad Concrete Beam-arch Combination Bridge [M]. Beijing:China Railway Publishing House Co. Ltd, 2021.
[3] 周孝文,陈良江,王新国,等. 高速铁路200~450 m跨度混凝土桥设计关键技术研究总报告[R]. 北京:中国铁路经济规划研究院,2017:4-12,86-106.
Zhou Xiaowen, Chen Liangjiang, Wang Xinguo, etc. General Report on the Study of Key Technologies for the Design of 200~450 m Span Concrete Bridges for High-speed Railroads [R]. Beijing: China Railway Economic and Planning Research Institute, 2017:4-12, 86-106.
[4] 宋子威,杨利卫,王德志. 福平铁路乌龙江(144+288+144)m部分斜拉桥主桥设计[J]. 铁道标准设计,2017(11):42-46.
Song Ziwei, Yang Liwei, Wang Dezhi. The Design of Main Bridge of Wulong River on Fuzhou-Pingtan Railway[J]. Railway Standard Design, 2017(11):42-46.
[5] 林骋. 常益长铁路沅江特大桥(34+118+240+118+34)m矮塔斜拉桥设计[J]. 铁道标准设计,2020(9):70-74.
Lin Cheng. Design of (34+118+240+118+34)m Extradosed Cable-stayed Bridge on Changde-Yiyang-Changsha Railway[J]. Railway Standard Design, 2020(9):70-74.
[6] 聂建国. 钢-混凝土组合结构桥梁[M]. 北京:人民交通出版社,2011:1-8.
Nie Jianguo. Steel-concrete Combination Structure Bridge [M]. Beijing: China Communications Press,2011:1-8.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
中铁第四勘察设计院集团有限公司科技研发项目(2021K013)
{{custom_fund}}