研究目的: 针对在城市敏感区近距离穿越城市主干道下既有大断面隧道工程中变形控制难的问题,本文以北京地铁19号线下穿城市主干道下既有1号线隧道为背景,具有近距离穿越、隧道二衬混凝土无配筋,建设年代久远,裂缝病害、地层上硬下软等不利因素,项目穿越采取了洞外小导洞注浆、洞内芳纶布与钢板加固相结合的措施进行控制,同时工程通过分析计算与试验段确定最佳的盾构参数进行穿越,施工前对各项穿越措施进行了数值分析,对穿越方案与参数的确定起到指导作用,施工后根据监测结果对比分析,并验证了控制措施的可行性与数值计算的准确性。
研究结论: (1)采用洞外小导洞开挖注浆加固措施能够减小沉降,满足变形控制要求;(2)洞内钢板+芳纶布的结构加固措施能够有效增加既有地铁隧道的刚度,减小结构应力;(3)土仓压力、同步注浆压力最优取值范围为0.08~0.10 MPa和0.20~0.24 MPa;(4)数值模拟与现场监测结果对比偏差率不大于15.0%,能够有效预测盾构施工对既有结构的变形影响;(5)本文研究可为类似穿越工程控制措施的设计施工提供技术支撑。
Abstract
Research purposes: For the problem of difficult deformation control in the project of crossing the existing large section tunnel under the city trunk road in the sensitive urban area, this paper takes the Beijing Metro Line 19 tunnel under the existing Line 1 under the city trunk road as the background, with such unfavorable factors like close crossing, tunnel second lining concrete without reinforcement, long construction age, crack disease, and hard and soft stratum. The project crossing adopts the combination of small guide hole grouting outside the hole, and aramid cloth and steel plate reinforcement inside the tunnel. At the same time, the project determines the best shield parameters for crossing through analytical calculations and test sections, and numerical analysis of the crossing measures is carried out before construction, which plays a guiding role in determining the crossing scheme and parameters. After construction, the feasibility of the control measures and the accuracy of the numerical calculation are verified by comparing and analyzing the monitoring results.
Research conclusions: (1) The project adopts small guide hole excavation grouting reinforcement measures which can reduce the settlement, and meet the requirements of deformation control. (2) The structural reinforcement measures of steel plate+aramid cloth in the tunnel can effectively increase the stiffness of the existing subway tunnel and reduce the structural stress. (3) The optimal values of soil pressure and synchronous grouting pressure are 0.08~0.10 MPa and 0.20~0.24 MPa. (4) The deviation rate between numerical simulation and field monitoring results is not more than 15.0%, which can effectively predict the influence of shield construction on the deformation of existing structures. (5) The research results can provide technical support for the design and construction of control measures for similar crossing projects.
关键词
城市主干道 /
盾构 /
变形控制 /
小导洞开挖 /
地层注浆 /
钢板加固 /
芳纶布加固 /
大断面隧道
{{custom_keyword}} /
Key words
city trunk road /
shield /
deformation control /
small guide hole excavation /
strata grouting /
steel plate reinforcement /
aramid cloth reinforcement /
large section tunnel
{{custom_keyword}} /
中图分类号:
U213.2
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 何明华. 地铁盾构隧道近距离下穿既有铁路隧道安全性分析[J]. 低温建筑技术,2019(8):111-114.
He Minghua. Safety Analysis of Metro Shield Tunnel Closely Crossing Existing Railway Tunnels[J]. Low Temperature Architecture Technology, 2019(8):111-114.
[2] Liu Bo, Huang Peige, Zhu Siran, etc. Disturbing Effect of Shield Tunnel Down-traversing Nearby Existing Metro Tunnel[C]//Proceedings of 7th International Conference on Intelligent Computation Technology and Automation. Changsha,Hunan,2015: 210-213.
[3] 刘梓圣,张冬梅. 软土盾构隧道芳纶布加固机理和效果研究[J]. 现代隧道技术,2014(5):155-160.
Liu Zisheng, Zhang Dongmei. The Mechanism and Effects of AFRP Reinforcement for a Shield Tunnel in Soft Soil[J]. Modern Tunnelling Technology, 2014(5):155-160.
[4] Liu Xuezeng, Lai Haoran, Sang Yunlong. Case Study on the Model Test of Staggered-jointed Assembling Shield Tunnel Structure Reinforced by Bonded Steel Plates under Large Deformation[C]//Proceedings of 2019 International Conference on Advances in Civil Engineering, Energy Resources and Environment Engineering. Shanghai, 2019.
[5] 来弘鹏,郑海伟,何秋敏,等. 砂土地层盾构隧道小角度斜下穿既有隧道施工参数优化研究[J].中国公路学报,2018(10):130-140.
Lai Hongpeng, Zheng Haiwei, He Qiumin, etc. Investigation into Parameter Optimization of Existing Metro Tunnel for Shield Tunnel Closely Undercrossing It at Small Angle in Sand Stratum[J]. China Journal of Highway and Transport, 2018(10):130-140.
[6] Zhen Huang, Hai Zhang, Zhen Long, etc. Field Test Optimization of Shield Tunnelling Parameters Undercrossing an Existing High-speed Railway Tunnel: A Case Study[J]. Geotechnical and Geological Engineering, 2021(2):1381-1398.
[7] 叶飞,苟长飞,陈治,等. 盾构隧道同步注浆引起的地表变形分析[J].岩土工程学报,2014(4):618-624.
Ye Fei, Gou Changfei, Chen Zhi, etc. Ground Surface Deformation Caused by Synchronous Grouting of Shield Tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014(4):618-624.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
中国国家铁路集团有限公司科技研究开发计划重点课题(N2020G009)
{{custom_fund}}