研究目的:近年来无砟轨道板大修需求增加,营业线无砟轨道板更换正在成为全路的共性问题,寻求线路合理拨道换板作业参数以提升混凝土板更换效率有其必要性。为探讨优化高速铁路线路拨道换板合理作业参数,进一步提升工务换板养维效率,以既有运营线拨道整修换板作业为研究对象,建立线路拨道有限元模型,研究垫轨、拨轨状态下线路曲线超高条件、工装布置间距、扣件松开长度、温差等因素对拨道作业的影响。
研究结论:(1)曲线超高地段作业条件更为严苛,拨道前分析调整各钢垫梁工装及轨距拉杆至合理布置间距可大幅提高作业安全性;(2)扣件上拔力受工装垫轨高度、扣件松开长度以及曲线半径共同影响,与温度不相关;(3)钢轨应力状态与扣件松开长度、曲线半径近似呈反比例函数负相关;(4)施工轨温低于锁定轨温时钢轨受力最大,为保证可一次性更换2~3块轨道板,建议直线地段最小扣件松开长度100 m、半径大于 5 500 m曲线超高地段最小扣件松开长度110 m;(5)本研究结果可为进一步优化高速铁路线路运维技术和提升基础设施装备技术水平提供参考依据。
Abstract
Research purposes: In recent years, the demand for ballasted track slab overhaul has increased, and the replacement of ballasted track slab on business lines is becoming a common problem on the whole railway, therefore there is a need to seek reasonable parameters of the line toggle for slab replacement to improve the efficiency of concrete slab replacement. To explore the optimization of reasonable parameters for rail shifting and further improve the efficiency of line maintenance, taking the renovation of existing operation lines for track shifting and slab replacement as the research object, by establishing a FEM, the effects of line curve super elevation, equipment layout spacing, fastener release length, and temperature on track shifting operation under track shifting states were studied.
Research conclusions: (1) The conditions in curve superelevation sections were more stringent, before track shifting, analyzing and adjusting the equipment layout spacing to a reasonable spacing could greatly improve the safety of the operation. (2) The pull-up force is affected by the height of the tooling rail, the length of the fastener release, and the radius of the curve, and is not related to temperature. (3) The stress state is approximately inversely proportional to the length of the fastener release and the curve radius. (4) The temperature of the construction track is lower than the temperature of the locked track, which is the most unfavorable stress situation for the rail, to ensure that 2~3 track slabs can be replaced at once, it is recommended that the minimum fastener release length be 100 m, and for the curve, superelevation section with a radius greater than 5 500 m be 110 m. (5) The research results can provide reference for further optimizing high-speed railway line maintenance and improving infrastructure equipment technology level.
关键词
高速铁路 /
线路拨道 /
换板 /
运输维修 /
运营线路
{{custom_keyword}} /
Key words
high-speed railway /
rail shifting /
track replacement /
railway maintenance /
operation line
{{custom_keyword}} /
中图分类号:
U213.9
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 闫斌, 谢浩然, 潘文彬, 等. 大跨度混合梁斜拉桥-轨道系统受力特性[J]. 铁道工程学报, 2019(9): 11-16.
Yan Bin, Xie Haoran, Pan Wenbin, etc. Characteristics of Interaction between Tracks and Long-span Cable-stayed Bridge with Steel-concrete Composite Beam[J]. Journal of Railway Engineering Society, 2019(9): 11-16.
[2] 谢浩然, 徐凌雁, 许婧, 等. 桥跨布置对连续梁桥上轨道地震响应影响规律研究[J]. 铁道科学与工程学报, 2023(10): 3873-3883.
Xie Haoran, Xu Lingyan, Xu Jing, etc. Seismic Response of Track System on Continuous Bridge under Complex Bridge Structure Arrangements[J]. Journal of Railway Science and Engineering, 2023(10): 3873-3883.
[3] 谭社会, 夏海涛, 张建强, 等. 高速铁路无砟轨道大超高区段轨道板更换技术[J]. 中国铁路, 2022(8): 88-93.
Tan Shehui, Xia Haitao, Zhang Jianqiang, etc. Replacement Technology of Track Slab in Large Superelevation Section of Ballastless Track of High Speed Railway[J]. China Railway, 2022(8): 88-93.
[4] 谢浩然. 考虑冻融劣化损伤的无砟轨道力学特性研究[J]. 中国铁路, 2024(9): 15-23.
Xie Haoran.Mechanical Characteristics of Ballastless Track Considering Freeze-thaw Deterioration Damage[J]. China Railway, 2024(9): 15-23.
[5] 刘竞. 单天窗期横向拨轨更换无砟轨道伤损轨道板关键技术创新与实践[J]. 铁道建筑, 2020(4): 34-37.
Liu Jing.Innovation and Practice of Key Technology to Replace Damaged Concrete Track Slab of Ballastless Track Adopting Transversely Rail-moving Method in a Single Maintenance Window Period[J]. Railway Engineering, 2020(4): 34-37.
[6] 毛晓君. 高速铁路无砟轨道拨轨换板技术[J]. 铁道建筑, 2020(5): 94-97.
Mao Xiaojun.Technology of Replacing Ballastless Track Slab by Track Shifting for High Speed Railway[J]. Railway Engineering, 2020(5): 94-97.
[7] TB 10621—2014, 高速铁路设计规范[S].
TB 10621—2014, Code for Design of High Speed Railway[S].
[8] TB 10098—2017, 铁路线路设计规范[S].
TB 10098—2017, Code for Design of Railway Line[S].
[9] TB 10015—2012, 铁路无缝线路设计规范[S].
TB 10015—2012, Code for Design of Railway Continuous Welded Rail[S].
[10] Yan Bin, Cheng Ruiqi, Pan Wenbin, etc. Influence of Interface Crack on Dynamic Characteristics of CRTS Ⅲ Slab Ballastless Track on Bridge[J]. Journal of Central South University, 2022(8): 2665-2674.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金面上资助项目(52278470); 中国国家铁路集团有限公司科技开发课题(K2022G001); 中国铁路设计集团有限公司科技开发课题(2022A02238001)
{{custom_fund}}