Research on the Characteristics of Climate and Frozen Soil Changes along the Qinghai-Tibet Line under Heating Conditions
MIAO Xueyun1, TANG Zhanfeng2, MI Weijun1, KONG Lingwei1, CHENG Jia1
1. China Railway Northwest Research Institute Co. Ltd, Lanzhou, Gansu 730000, China; 2. China Railway Lanzhou Group Co. Ltd, Lanzhou, Gansu 730000, China
Abstract:Research purposes: The permafrost on the Qinghai-Tibet Railway is gradually degraded due to the global temperature rise, which brings many technical problems to railway safety operation and related railway construction in the plateau cold region. By collecting and analyzing the changes in temperature, precipitation, ground temperature, and frozen soil upper limit of meteorological stations along the Qinghai-Tibet Railway, the characteristics of climate and frozen soil changes along the Qinghai-Tibet Railway under the condition of temperature rise of the Qinghai-Tibet Railway are analyzed. The research results aim to provide theoretical support for the engineering maintenance and engineering construction in the plateau cold area under warming conditions. Research conclusions: (1) In the past 20 years, the warming rate of the Qinghai-Tibet Plateau has reached 0.64 ℃/ 10 a, and the precipitation has increased at a rate of 16.8 mm/10 a. (2) The temperature along the Qinghai-Tibet Railway is influenced by altitude and dimensions, with an average temperature value of -5.9 ℃~-2.7 ℃. The annual average precipitation has shown an increasing trend from 1996 to 2022, an increase of 75~86 mm compared to 1976 to 1995. (3) The ground temperature in the permafrost region of the Qinghai-Tibet Railway in 2022 has increased by 0.06~0.21 ℃ compared to 2007, and the temperature at the north and south ends of the permafrost has increased by 0.04 ℃~0.17 ℃. The freezing index along the route ranges from 1.5 to 5.6. (4) The research results can provide theoretical support and technical reference for the construction of road projects in plateau cold areas and the disposal of existing engineering diseases.
苗学云, 唐占峰, 米维军, 孔令伟, 程佳. 升温条件下青藏线气候与冻土变化特征研究[J]. 铁道工程学报, 2024, 41(11): 12-16.
MIAO Xueyun, TANG Zhanfeng, MI Weijun, KONG Lingwei, CHENG Jia. Research on the Characteristics of Climate and Frozen Soil Changes along the Qinghai-Tibet Line under Heating Conditions. Journal of Railway Engineering Society, 2024, 41(11): 12-16.
杨耀先,胡泽勇,路富全,等. 青藏高原近60年来气候变化及其环境影响研究进展[J]. 高原气象,2022(1):1-10.Yang Yaoxian, Hu Zeyong, Lu Fuquan, etc. Progress of Recent 60 Years’Climate Change and Its Environmental Impacts on the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2022 (1): 1-10.
[2]
刘晓东,张敏锋,惠晓英,等.青藏高原当代气候变化特征及其对温室效应的响应[J].地理科学,1998(2): 113–121.Liu Xiaodong, Zhang Minfeng, Hui Xiaoying, etc. Characteristics of Contemporary Climate Change in the Qinghai-Tibet Plateau and Its Response to the Greenhouse Effect[J]. Scientia Geographica Sinica, 1998(2): 113-121.
[3]
李博,周天军.基于IPCCA1B情境下的中国未来气候变化预估:多模式集合结果及其不确定性[J].气候变化研究进展, 2010(4): 270–276.Li Bo, Zhou Tianjun.Projected Climate Change over China Under SRES A1B Scenario:Multi-model Ensemble and Uncertainties[J]. Climate Change Research, 2010 (4): 270-276.
[4]
许崇海,罗勇,徐影.全球气候模式对中国降水分布时空特征的评估和预估[J].气候变化研究进展, 2010(6): 398-404.Xu Chonghai, Luo Yong, Xu Ying.Assessment and Projection for Spatial-Temporal Distribution of Precipitation in China Based on Global Climate Models[J]. Climate Change Research, 2010 (6): 398-404.
[5]
王澄海,靳双龙,吴忠元,等.估算冻结( 融化) 深度方法的比较及在中国地区的修正和应用[J].地球科学进展, 2009(2): 132-140.Wang Chenghai, Jin Shuanglong, Wu Zhongyuan, etc. Evaluation and Application of the Estimation Methods of Frozen (Thawing) Depth over China[J]. Advances in Earth Science, 2009 (2): 132-140.
[6]
南卓铜,李述训,吴通华,等.近30年青藏高原西大滩多年冻土变化[J].地理学报, 2003(6): 817-823.Nan Zhuotong, Li Shuxun, Wu Tonghua, etc. Permafrost Changes in the Northern Limit of Permafrost on the Qinghai-Tibet Plateau in the Last 30 Years[J]. Acta Geographica Sinica, 2003(6): 817-823.
[7]
刘广岳,谢昌卫,杨淑华. 青藏公路沿线多年冻土区活动层起始冻融时间的时空变化特征和影响因素[J]. 冰川冻土,2018(6):1067-1078.Liu Guangyue, Xie Changwei, Yang Shuhua.Spatial and Temporal Variation Characteristics on the Onset Dates of Freezing and Thawing of Active Layer and Its Influence Factors in Permafrost Regions along the Qinghai-Tibet Highway[J]. Journal of Glaciology and Geocryology, 2018 (6): 1067-1078.
[8]
龚婷婷,高冰,吉子晨,等. 基于MODIS温度的青藏高原多年冻土活动层厚度变化研究[J]. 地理科学,2022(10):1848-1856.Gong Tingting, Gao Bing, Ji Zichen, etc. Variation of Active Layer Thickness of Permafrost in the Qinghai-Tibetan Plateau Based on MODIS Temperature Product[J]. Scientia Geographica Sinica, 2022(10): 1848-1856.
[9]
董元宏,彭惠,罗滔,等. 气候变暖背景下拟建青藏高速公路沿线典型区段多年冻土未来50年退化特征[J]. 灾害学,2019(S1):20-25.Dong Yuanhong, Peng Hui, Luo Tao, etc. Degradation Characteristics of the Permafrost at Typical Sites along Qinghai-Tibet Expressway in the Next 50 Years under Climate Warming Background[J]. Journal of Catastrophology, 2019(S1): 20-25.
[10]
张明礼,周志雄,周凤玺,等夏季降雨增加对多年冻土活动层水热状态的影响研究[J]. 岩土力学,2022(12):3335-3346.Zhang Mingli, Zhou Zhixiong, Zhou Fengxi, etc. Effects of Increased Summer Rainfall on the Thermal-moisture Dynamics of Permafrost Active Layer[J]. Rock and Soil Mechanics, 2022 (12): 3335-3346.
[11]
杨耀先,胡泽勇,路富全,等. 青藏高原近60年来气候变化及其环境影响研究进展[J]. 高原气象,2022(1):1-10.Yang Yaoxian, Hu Zeyong, Lu Fuquan, etc. Progress of Recent 60 Years’Climate Change and Its Environmental Impacts on the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2022 (1): 1-10.
[12]
蔡汉成,金兰,李勇,等. 降水对青藏高原风火山地区多年冻土的影响[J]. 铁道学报,2018(9):104-110.Cai Hancheng, Jin Lan, Li Yong, etc. Influence of Precipitation on Permafrost in Fenghuo Mountain Region of Tibetan Plateau[J]. Journal of the China Railway Society, 2018 (9): 104-110.