大跨度上承式钢管混凝土拱桥受力性能分析

李子特, 王根会, 樊江, 武维宏, 李晓钟

铁道工程学报 ›› 2024, Vol. 41 ›› Issue (1) : 32-38.

PDF(1602 KB)
PDF(1602 KB)
铁道工程学报 ›› 2024, Vol. 41 ›› Issue (1) : 32-38.
长大干线:桥梁工程

大跨度上承式钢管混凝土拱桥受力性能分析

  • 李子特1,**, 王根会1, 樊江2, 武维宏2, 李晓钟1
作者信息 +

Mechanical Performance Analysis of Long-span Upper-loaded CFST Arch Bridge

  • LI Zite1, WANG Genhui1, FAN Jiang2, WU Weihong2, LI Xiaozhong1
Author information +
文章历史 +

摘要

研究目的: 为系统地掌握西北地区大温差、峡谷风、高震区共存的复杂建设条件下上承式钢管混凝土拱桥的力学性能,以一座净跨400 m的公路同类型拱桥为例,按照现行设计规范,采用统一模量法建立三维杆系有限元模型,对概率极限状态设计方法要求的静力性能、稳定性、动力特性、抗震性能的组合工况进行全面、系统地分析和计算,为同类型桥梁设计提供参考。
研究结论: (1)温度效应大于汽车荷载效应,拱脚处横风效应突出;(2)双向偏压、偏拉组合受力为单弦杆控制设计状态,拱顶为桁式拱肋承载力的薄弱位置;(3)腹杆、横撑、平联等构件与弦杆构造匹配性较好时,承载力及疲劳性能等易满足受力需求;(4)温度、徐变预拱度比车道荷载大很多;(5)主拱圈在材料、几何、双重非线性下稳定性分别下降了5.5%、11.9%、17.1%;(6)振型相对密集、频率值较小,主振型为面外弯扭振动,具有多方向和多角度耦联性;(7)时程分析结果大于反应谱分析结果,但小于静力工况,拱桥抗震性能好;(8)上承式钢管混凝土拱桥在复杂建设条件下具有良好的受力性能。

Abstract

Research purposes: To methodically master the mechanical performance of deck type concrete-filled steel tube arch bridge under the complex construction conditions of the coexistence of large temperature difference, canyon wind, and high earthquake areas in northwest China, a highway arch bridge of the same type with a clear span of 400 meters is used as an example. Based on present design specifications, a three-dimensional bar system finite element model is established using the unified modulus approach, and a thorough and methodical investigation and computation of the combined working conditions of the static performance, stability, and dynamic characteristics and seismic performance have been carried out in order to provide guidance for the design of comparable bridges.
Research conclusions: (1)The crosswind effect at the arch foot is prominent, and the temperature effect is greater than the car load effect.(2)The combined force of bi-directional eccentric tension and compression is in the control design state of single chord, and the arch crown is the weak position of the truss arch rib bearing capacity.(3)The fatigue performance and bearing capacity are easily met when the components, such as web members, transverse braces, and horizontal connections, have good matching with the chord structure.(4)The temperature and creep camber to lane loadis much larger.(5)Under material, geometric, and dual nonlinearity, the main arch ring's stability drops by 5.5%, 11.9%, and 17.1%, respectively.(6)The frequency value is low and the vibration mode is rather dense. Out of plane bending torsional vibration, which possesses multidirectional and multiangle coupling features, is the primary vibration mode.(7)The time history analysis results show that arch bridges function well seismically since they are higher than the response spectrum analysis results but lower than the static conditions results.(8)The deck type steel tube concrete arch bridge has a good mechanical performance under complex construction conditions.

关键词

钢管混凝土拱桥 / 静力性能 / 稳定性 / 非线性 / 动力特性 / 抗震

Key words

CFST arch bridge / static performance / stability / nonlinearity / dynamic characteristics / earthquake resistance

引用本文

导出引用
李子特, 王根会, 樊江, . 大跨度上承式钢管混凝土拱桥受力性能分析[J]. 铁道工程学报, 2024, 41(1): 32-38
LI Zite, WANG Genhui, FAN Jiang, et al. Mechanical Performance Analysis of Long-span Upper-loaded CFST Arch Bridge[J]. Journal of Railway Engineering Society, 2024, 41(1): 32-38
中图分类号: U448.17   

参考文献

[1] 郑皆连, 等. 500 m级钢管混凝土拱桥建造创新技术[M]. 上海:上海科学技术出版社, 2020.
Zheng Jielian, etc. Innovative Technology for 500-meter Scale Concrete-filied Steel Tubular Arch Bridges[M]. Shanghai:Shanghai Scientific & Technical Publishers, 2020.
[2] 郑皆连, 王建军. 中国钢管混凝土拱桥[J]. 工程, 2018(4):143-155.
Zheng Jielian, Wang Jianjun. Concrete-Filled Steel Tube Arch Bridges in China[J]. Engineering, 2018(4):143-155.
[3]Li Zite, Wang Genhui, Fan Jiang, etc. Seismic Response Analysis of Multi-dimensional and Multi-angle Long-span Top-supported CFST Arch Bridge[J]. Advances in Civil Engineering, 10.1155, 2022.
[4] 杨根杰. 单拱肋预应力混凝土梁拱组合桥受力性能分析[J]. 铁道工程学报, 2017(6):37-42.
Yang Genjie. Analysis of Mechanical Property of Single Arch Rib Prestressed Concrete Beam Arch Composite Bridge[J]. Journal of Railway Engineering Society, 2017(6):37-42.
[5] 杨勇. 重载铁路大跨度上承式钢管混凝土拱桥设计研究[J]. 铁道标准设计, 2018(4):107-111.
Yang Yong. Technical and Economic Comparison on Heavy Haul Railway Simply-supported Girder with High-pier and Large Span [J]. Railway Standard Design, 2018(4):107-111.
[6] 陈佳, 胡文军. 大跨度上承式钢管混凝土拱桥整体稳定性研究[J]. 铁道建筑, 2020(8):16-19.
Chen Jia, Hu Wenjun. Study on Overall Stability of Long-span Deck Concrete-filled Steel Tubular Arch Bridge [J]. Railway Engineering, 2020(8):16-19.
[7] 张永亮, 刘海波, 陈兴冲, 等. 地震激励下铁路钢桁拱桥拱圈内力及应力分布[J]. 铁道工程学报, 2021(3):35-40.
Zhang Yongliang, Liu Haibo, Chen Xingchong, etc. Distribution of Internal Force and Stress in the Arch Ring of Railway Long-span Steel Truss Arch Bridge under Earthquake Excitation [J]. Journal of Railway Engineering Society, 2021(3):35-40.
[8] JTG/T D65-06—2015, 公路钢管混凝土拱桥设计规范[S].
JTG/T D65-06—2015,Specifications for Design of Highway Concrete-filled Steel Tubular Arch Bridges[S].

基金

国家自然科学基金项目(51768037,52162043);甘肃省科技重点研发计划项目(22YF7GA043,22YF11GA301)

PDF(1602 KB)

29

Accesses

0

Citation

Detail

段落导航
相关文章

/