研究目的:洪奇沥公铁大桥是深江铁路的控制性工程,主桥采用主跨808 m公铁合建斜拉桥一跨跨越洪奇沥水道,上层布置8车道城市快速路,下层布置4线铁路。结合建设条件、结构特点及使用性能,对主桥结构体系、主梁横断面及结构形式、索-塔锚固结构、施工方法等关键技术展开研究,确定技术合理可行和经济节约的设计方案。
研究结论:(1)首创了短边跨叠合板-桁组合梁斜拉桥结构体系,主桥长度减少20%,节省工程投资;(2)首次在4线铁路公铁合建斜拉桥上采用倒梯形双主桁截面,桥面布置紧凑、受力明确;(3)提出的边跨主梁采用矩形钢管混凝土叠合板-桁组合结构,集结构受力和锚固压重于一体,施工便捷;(4)发明了“自平衡交叉锚固+齿块锚固”的索-塔混合锚固方式,技术经济性高;(5)钢主梁创新采用“纵向大节段+横向分块”施工方法,解决了超宽超高超重整节段钢桁梁运输受既有桥净空限制的难题;(6)本研究成果可为公铁合建桁梁斜拉桥设计提供参考或借鉴。
Abstract
Research purposes: The Hongqili Rail-cum-road Bridge is control project of the new Shenzhen-Jiangmen Railway. The main bridge is a cable-stayed bridge with a main span of 808 m across the Hongqili Waterway. The upper layer is arranged with the 8-lane urban expressway, and the lower layer is arranged with 4-line railway. Combined with the construction conditions, structural characteristics and service performance, the key technologies such as structure system of the main bridge, the cross section and structural form of the main beam, the cable-tower anchorage structure and the construction method are studied to determine the reasonable and economical design scheme.
Research conclusions: (1) The structural system of laminated slab-truss composite girder cable-stayed bridge with short side span is first proposed, which reduces the length of main bridge by 20 % and saves engineering investment. (2) The inverted trapezoidal double main truss section is firstly adopted in the main girder of the 4-line rail-cum-road bridge, which makes the deck layout compact and the stress clear. (3) The proposed side span main girder adopts the rectangular concrete-filled steel tube laminated slab-truss composite structure, which integrates the stress and anchorage pressure of the structure, and is convenient for construction. (4) The cable-tower hybrid anchorage mode of "self-balanced cross anchorage + tooth block anchorage" is invented, which has high technical and economic efficiency. (5) The main girder creatively adopts the construction method of "longitudinal large section + transverse block", which solves the problem that the transportation of ultra-wide ultra-high overweight full block of steel girder is limited by the clearance of the existing bridge. (6) The research results of this paper can provide reference for the design of rail-cum-road cable-stayed bridge with truss girder.
关键词
公铁合建 /
短边跨斜拉桥 /
双主桁 /
叠合板-桁组合梁 /
自平衡交叉锚固
{{custom_keyword}} /
Key words
rail-cum-road bridge /
short side span cable-stayed bridge /
double main truss /
laminated slab-truss composite girder /
self-balanced cross anchorage
{{custom_keyword}} /
中图分类号:
U448.121
U442.54
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李军堂. 沪苏通长江公铁大桥主航道桥钢桁梁整体制造架设技术[J].桥梁建设,2020(5):10-15.
Li Juntang.Integral Manufacturing and Erection Techniques for Steel Truss Girder of Main Navigational Channel Bridge of Shanghai-Suzhou-Nantong Changjiang River Bridge[J]. Bridge Construction, 2020(5):10-15.
[2] 唐斌. 浩吉铁路荆州长江公铁大桥设计与建造关键技术[J]. 施工技术(中英文),2022(9):85-87.
Tang Bin.Design and Construction Key Technology of Jingzhou Yangtze River Rail-cum-road Bridge of Haoji Railway[J]. Construction Technology, 2022(9):85-87.
[3] 郭安娜,李喜平,刘振标. 杭温铁路楠溪江主跨240 m混凝土斜拉桥设计[J].铁道标准设计,2021(7):108-113.
Guo Anna, Li Xiping, Liu Zhenbiao.Design of 240 m Main Span Concrete Cable-stayed Bridge on Nanxi River of Hangzhou-Wenzhou Railway[J]. Railway Standard Design, 2021(7):108-113.
[4] 祝兵,张子怡,张振,等. 大跨度斜拉桥钢锚梁空间复杂力学性能研究[J].铁道标准设计,2022(3):95-99.
Zhu Bing, Zhang Ziyi, Zhang Zhen, etc. Research on Complicated Space Mechanical Performance of Steel Anchor Beam of Long-span Cable-stayed Bridge[J]. Railway Standard Design, 2022(3):95-99.
[5] 谢远超. 高速铁路大跨度四线钢桁斜拉桥桥塔设计[J].铁道标准设计,2021(2):67-72.
Xie Yuanchao.Design of Pylons of Long-span Steel Truss Cable-stayed Bridge on Four-line High-speed Railway[J].Railway Standard Design, 2021(2):67-72.
[6] 刘振标,文望青,陈良江. 铁路混合梁斜拉桥设计创新与实践[J].铁道工程学报,2019(5):30-36.
Liu Zhenbiao, Wen Wangqing, Chen Liangjiang.Design Innovation and Practice of Railway Hybrid Girder Cable- stayed Bridge[J]. Journal of Railway Engineering Society, 2019(5):30-36.
[7] 谢开仲,梁亦登,王红伟,等. 钢管混凝土构件承载力影响因素研究[J].铁道标准计,2021(4):104-109.
Xie Kaizhong, Liang Yideng, Wang Hongwei, etc. Research on Influencing Factors of Bearing Capacity of Concrete-filled Steel Tubular Members[J]. Railway Standard Design, 2021(4):104-109.
[8] 陈全胜,侯圣均,蒋晨晨,等.乍甸1号大桥钢-混凝土组合梁桥面优化设计[J].世界桥梁,2022(4):25-31.
Chen Quansheng, Hou Shengjun, Jiang Chenchen, etc. Optimal Design of Slabs of Steel-Concrete Composite Beam of Zhadian No. 1 Bridge[J]. World Bridges, 2022(4):25-31.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国铁集团科技研发项目(N2021G034,N2023G040); 中国铁建股份有限公司科技研发项目(2021-B17); 中铁第四勘察设计院集团有限公司科技研发项目(2021K001,2021K006,2021K015)
{{custom_fund}}