研究目的:为研究山岭盾构隧道的荷载分布特征及其衬砌结构力学行为,依托某铁路工程,基于FLAC3D建立数值模型,研究山岭铁路大断面盾构隧道管片上的荷载分布及大小,分析不同影响因素下双层衬砌的内力分布特征。 研究结论:(1)衬砌周边围岩应力在盾构通过前后,有瞬间增大再减小再增大最后保持不变的趋势,且稳定后衬砌上竖向和侧向地层压力均呈两端大中间小形状分布;(2)隧道在不同赋存条件下应选用与其相适应的荷载计算理论,如在50 m埋深(Ⅴ级围岩)条件下宜采用普氏理论,100 m埋深(Ⅴ级围岩)条件下宜采用铁路隧道规范理论;当围岩条件较差及埋深较浅时荷载计算理论结果略微偏于不安全,当埋深较大以及围岩条件较好时荷载计算理论结果均偏保守;(3)双层衬砌结构中二次衬砌相比管片内力很小,且围岩稳定性对二次衬砌的受力特性影响较大;(4)本研究成果可为山岭盾构隧道结构设计提供技术支撑。
Abstract
Research purposes: In order to investigate the load distribution characteristics of mountainous shield tunnel and the mechanical behavior of its lining structure, this paper focuses on a specific railway project. Utilizing the finite difference software FLAC3D, a three-dimensional numerical model is established to study the load distribution and magnitude on the segment of the shield tunnel in a large-section mountainous railway tunnel. The paper also analyzes the internal force distribution characteristics of single and double-layer linings under various influencing factors.
Research conclusions: (1) The stress in the surrounding rock of the lining exhibits a trend of instant increase, decrease, subsequent increase, and eventual stabilization before and after the shield tunnel passes through. After stabilization, both the vertical and lateral earth pressures on the lining show a distribution pattern with higher values at the ends and lower values in the middle. (2) The tunnel should employ load calculation theories that correspond to its existing conditions. For instance, the Prandtl theory is suitable for a 50 m depth (Class V surrounding rock), while the railway tunnel code theory is suitable for a 100 m depth (Class V surrounding rock). When the surrounding rock conditions are poorer and the depth is shallower, the results of load calculation theories slightly lean towards being less safe. On the other hand, for greater depths and better surrounding rock conditions, the results of load calculation theories tend to be conservative. (3) In a double-layer lining structure, the secondary lining experiences minimal internal forces compared to the segments. Furthermore, the stability of the surrounding rock significantly affects the stress characteristics of the secondary lining. (4) This research outcome can provide technical support for the structural design of mountainous shield tunneling.
关键词
铁路盾构隧道 /
荷载分布 /
结构受力 /
数值模拟
{{custom_keyword}} /
Key words
railway shield tunnel /
load distribution /
structural stress /
numerical simulation
{{custom_keyword}} /
中图分类号:
U455.4
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 封坤, 李茂然, 曹翔鹏,等. 基于遗传算法的水下全断面砂岩盾构隧道荷载反演分析[J]. 铁道标准设计,2023(4): 107-115.
Feng Kun, Li Maoran, Cao Xiangpeng, etc. Load Inversion Analysis of Underwater Full-Section Sandstone Shield Tunnel Based on Genetic Algorithm[J]. Railway Standard Design, 2023(4):107-115.
[2] 王明年, 王志龙, 张霄, 等. 深埋隧道围岩形变压力计算方法研究[J]. 岩土工程学报,2020(1): 81-90.
Wang Mingnian, Wang Zhilong, Zhang Xiao, etc. Method for Calculating Deformation Pressure of Surrounding Rock of Deep-buried Tunnels[J]. Chinese Journal of Geotechnical Engineering, 2020(1): 81-90.
[3] 王道远,郝士华. 基于实测数据统计的盾构隧道土压力分布规律研究[J]. 现代隧道技术,2018(3):46-53.
Wang Daoyuan, Hao Shihua.Distribution Laws of Earth Pressure Acting on a Shield Tunnel Based on Measured Data[J]. Modern Tunnelling Technology, 2018(3):46-53.
[4] 王士民, 陈兵, 王先明,等. 盾构隧道二次衬砌合理施作时机模型试验研究[J]. 岩土工程学报,2020(5):882-891.
Wang Shimin, Chen Bing, Wang Xianming, etc. Model Tests on Reasonable Construction Time of Secondary Lining of Shield Tunnel[J]. Chinese Journal of Geotechnical Engineering, 2020(5):882-891.
[5] 王梦恕. 水下交通隧道发展现状与技术难题:兼论“台湾海峡海底铁路隧道建设方案”[J]. 岩石力学与工程学报,2008 (11): 2161-2172.
Wang Mengshu.Current Developments and Technical Issues of Underwater Traffic Tunnel—Discussion on Construction Scheme of Taiwan Strait Undersea Railway Tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2008(11): 2161-2172.
[6] 晏启祥, 程曦, 何川, 等. 水压条件下盾构隧道双层衬砌力学特性分析[J]. 铁道工程学报,2010(9): 55-59.
Yan Qixiang, Cheng Xi, He Chuan, etc. Analysis of Mechancal Properties of Double-layered Lining of Shield Tunnel under Water Pressure[J]. Journal of Railway Engineering Society, 2010(9): 55-59.
[7] 晏启祥, 姚超凡, 何川, 等. 水下盾构隧道双层衬砌分析模型的比较研究[J]. 铁道学报,2015(12): 114-120.
Yan Qixiang, Yao Chaofan, He Chuan, etc. Comparative Study of Analysis Models for Underwater Shield Tunnel with Double Linings[J]. Journal of the China Railway Society, 2015(12): 114-120.
[8] 晏启祥, 李彬, 张蒙, 等. 200 km·h-1列车脱轨撞击作用下盾构隧道二次衬砌对管片衬砌的防护效果[J]. 中国铁道科学, 2014(6): 70-78.
Yan Qixiang, Li Bin, Zhang Meng, etc. Protective Effect of Secondary Lining of Shield Tunnel on Segment Lining under Derailment Impact at the Speed of 200 km·h-1[J]. China Railway Science, 2014(6): 70-78.
[9] Feng Kun, He Chuan, Fang Yong, etc. Study on the Mechanical Behavior of Lining Structure for Underwater Shield Tunnel of High-speed Railway[J]. Advances in Structural Engineering, 2013(8):1381-1399.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
中国铁建股份有限公司科研计划课题(18-C39); 中铁第一勘察设计院集团有限公司科技研发计划项目(院科19-73)
{{custom_fund}}