研究目的: 既有线路基设置支挡结构时,确定既有与新建结构组合支挡结构形式,保证各结构的受力和变形是工程核心。以实际工程为背景,开展不同施工阶段现场试验,研究组合结构受力和变形规律,分析协同受力模式。研究结论: (1)各施工阶段,桩板墙背侧土压力随距桩顶距离呈增加趋势;临近悬臂式挡土墙侧土压力先增加后减小再增加;桩后位置土压力先减小后增加;(2)随路基填筑高度的增加,桩身弯矩均呈距新建桩顶距离先增加而后减小的现象;桩身位移随距新建桩顶距离呈减小趋势;(3)基于实测数据,提出了组合结构简化受力模式;(4)本研究可为该组合结构应用于铁路路基帮宽工程提供技术支撑。
Abstract
Research purposes: Determine the type of composite retaining structure and investigate the stress and deformation of the structure is the core when the structure is set up in the existing subgrade. Based on the practical engineering, field tests at different construction stages are carried out to study the combined force and deformation law to analyze the cooperative bearing mode of the structure.
Research conclusions: (1) The earth pressure on the back of the pile-sheet wall increases with the distance from the pile top, and the earth pressure adjacent to the cantilever retaining wall increases first and then decreases and finally increases. The earth pressure behind the pile decreases first and then increases. (2) With the increase of filling height, the bending moment of pile increases first and then decreases with the increase of distance from the top of new pile, and the pile displacement decreases with the distance from the new pile top. (3) The simplified force model of composite structure is proposed from the measured data. (4) The study can provide technical support for the application of the composite structure in the railway subgrade widening project.
关键词
新建桩板墙 /
既有悬臂式挡土墙 /
变形分析 /
协同受力模式
{{custom_keyword}} /
Key words
the new pile-sheet wall /
the existing cantilever retaining wall /
deformation analysis /
cooperative bearing mode
{{custom_keyword}} /
中图分类号:
TU472
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Tang L, Cong S Y, Xing W Q, etc. Finite Element Analysis of Lateral Earth Pressure on Sheet Pile Walls[J]. Engineering Geology, 2018, 244: 146-158.
[2] Zhang R H, Goh A T C, Li Y Q, etc. Assessment of Apparent Earth Pressure for Braced Excavations in Anisotropic Clay[J]. Acta Geotechnica, 2021(5): 1615-1626.
[3] Fall M, Gao Z G, Ndiaye B C.Three-dimensional Response of Double Anchored Sheet Pile Walls Subjected to Excavation and Construction Sequence[J]. Heliyon, 2019(3): e01348.
[4] Xu C J, Ding H B, Luo W J, etc. Experimental and Numerical Study on Performance of Long-short Combined Retaining Piles[J]. Geomechanics and Engineering, 2020(3): 255-265.
[5] Tangjarusritaratorn T, Miyazaki Y, Sawamura Y, etc. Numerical Investigation on Arching Effect Surrounding Deep Cylindrical Shaft during Excavation Process[J]. Underground Space, 2021:1-22.
[6] 谢涛, 罗强, 张良, 等. 桩板墙支护下的高速铁路陡坡地基路堤变形演化特性[J]. 铁道学报, 2020(10):127-135.
Xie Tao, Luo Qiang, Zhang Liang, etc. Deformation Characteristics of Embankment Supported by Sheet-pile Wall on Steep Slope Ground in High-speed Railway[J]. Journal of the China Railway Society, 2020(10): 127-135.
[7] Clayton C R I, Woods R I, Milititsky J. Earth Pressure and Earth-retaining Structures[M]. CRC Press, 2014:399-404.
[8] 杨广庆, 苏谦. 路基工程[M]. 北京:中国铁道出版社, 2018.
Yang Guangqing, Su Qian.Subgrade Engineering [M]. Beijing: China Railway Publishing House, 2018.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(52368065); 中央引导地方科技发展资金项目(22ZY1QA005); 兰州交通大学重点研发项目(LZJTU-ZDYF2305)
{{custom_fund}}